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Torsional oscillations of an infinite plate 
in second-order fluids 
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Department of Mechanical Engineering, University of Illinois, 

Urbana, Illinois, U.S.A.? 
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The flow of an incompressible second-order fluid due to torsional oscillations of 
an infinite plate when the fluid is infinite in extent as well as the case when it is 
bounded by another stationary parallel plate has been considered by expanding 
the velocity components and the pressure in powers of the amplitude of oscillation 
of the plate. In  both cases the first-order solution consists of a transverse velocity 
and the second-order solution gives a radial-axial flow composed of a steady part 
and a fluctuating part. In the case of the unbounded plate the steady part of the 
radial flow does not vanish outside the boundary-layer region. Hence the 
equations are solved by another approximate method for the steady part of the 
flow. The effects of the non-Newtonian terms are to increase the non-dimensional 
boundary thickness and the shearing stress on the plate. In the case of two plates 
the velocity components and the shearing stresses on the plates have been 
expressed in powers of Reynolds number R for its small values. Their asymtotic 
behaviour for large R has also been studied. The asymtotic expansion of the 
iluctuating part of the radial-axial flow shows that the boundary layer is 
developed at  both the plates. 

I .  Introduction 
A simple material is a substance for which the stress is determined by a know- 

ledge of the entire history of the strain. A simple material is called a simplejuid 
if it  has the property that all local states with the same mass density are intrinsi- 
cally equivalent in response, with all observable differences in response being due 
to definite differences in history (No11 1958). For any given history g(s) a retarded 
history g,(s) can be defined as 

gab) = g(as) (0 G 8 < cot, 
where 01 is the retardation factor, 0 < a Q 1. Taking this definition of retarded 
history and assuming that the stress is more sensitive to recent deformation than 
to deformations which occurred in the distant past, Coleman & No11 (1960) proved 
that the theory of simple fluids yields the theory of perfect fluids (deviatoric stress 
is independent of strain-rate) for a -+ 0 and yields the theory of Newtonian fluids 
(deviatoric stress is linearly proportional to deviatoric strain-rate) as the next 
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approximation. The theory of Newtonian fluids gives a correction to the theory 
of perfect fluids which is complete to within terms of order one in a. If we neglect 
all the terms of order greater than two in a the constitutive equation of an incom- 
pressible simple fluid can be written as 

Ti j  +@if = ~ 1 4 )  i j  +A A ~ i j  + ~ 3 4 1 )  ik 4 1 ) / c j ?  (1) 

( 2 )  where 

rij is the stress tensor, vi, ai are the velocity and the acceleration vectors, p l ,  p2, ,us 
are the material constants and p is an indeterminate hydrostatic pressure. The 
fluid governed by this constitutive equation is called an incompressible second- 
order $uid,  for it gives complete second-order corrections to the incompressible 
perfect fluid. The constitutive equation of the general Rivlin-Ericksen fluids 
(1955) also reduces to (1) when square and products of A(2) ii are neglected and the 
coefficients of the remaining terms are taken to be constants. The solution of 
poly-iso-butylene in cetane behaves as a second-order fluid and the values of the 
constants pl, p2 and p3 have been determined by H. Markovitz (unpublished). 

The torsional oscillation of a plate in Newtonian fluids has been discussed by 
Rosenblat (1959). He obtained the solution by expanding velocity components 
and the pressure in powers of the amplitude of the oscillation of the plate and 
showed that the solution is highly convergent within the boundary layer. He 
has also discussed the case when the fluid is confined between two torsionally 
oscillating plates (Rosenblat 1960). Similar problems in Reiner-Rivlin fluids 
were discussed by the author (Srivastava 1959, 1960). The aim of the present 
paper is to study these problems in second-order fluids. Assuming the amplitude 
of the oscillation of the plate to be small, the flow parameters and the pressure 
are expanded in its powers. The non-Newtonian effects are exhibited through 
two dimensionless parameters a ( = p2 n/pl) and p ( = p3n/,u,), n being the fre- 
quency of the oscillation of the plate. By putting a = p = 0 in any expression 
the corresponding expression for the flow of Newtonian fluid is reproduced. In 
both cases, that is when the fluid is infinite in extent and when it is bounded by 
another stationary parallel plate, the first-order solution consists of a transverse 
velocity which is independent of p. The second-order solution gives a radial- 
axial flow which involves both a and /3 and is composed of a steady term and a 
term of frequency 2n. In the case of oscillation of an unbounded plate the steady 
part of the radial flow persists outside the boundary-layer region. This unex- 
pected behaviour is the consequence of the approximation of the inertia force by 
its centrifugal part only in the series expansion. This is in no way justified outside 
the boundary-layer region where this part is vanishingly small and the neglected 
part of the inertia force is at least comparable to it. Hence the complete equations 
are solved by another approximate Pohlhausen-type method. The graphs of the 
steady part of the radial flow and the axial flow for a 6.8% solution of poly-iso- 
butylene in cetane at  30 "C (for n = 1-0,1.5,2.0) have been drawn (figures 1 and 2) 
and just for comparison the lines representing the corresponding flow neglecting 
the non-Newtonian effects are also drawn in the graphs. In the case when the 
fluid is confined between an oscillating and a stationary plate the velocity com- 
ponents and the shearing stresses on the plates have been expressed in powers of 

A(1) ij = vi, j + vj, i ,  A(2)ij = ~ i ,  j + aj, i + 2vm, i urn, j, 
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the Reynolds number R ( =  nd2/vl)  for its small values and their asymtotic 
behaviour for large R has also been found. The transverse velocity behaves as if 
the stationary plate were absent when R tends to infinity. The transverse shearing 
stress on the stationary plate tends to that on the oscillating plate when R tends 
to zero, but when R tends to infinity it tends to zero. The unsteady part of the 
radial-axial flow suggests that the boundary layer is developed at  both the plates 
for large values of R. 

2. The equations of motion 
The equations of motion in cylindrical polar co-ordinates(r, 0, z )  with azimuthal 

variations neglected are 

where p is the density and u, v, w are the velocity components in the directions of 
r ,  13, z respectively. The equation of continuity is 

au aw 
ar r ax -+-+- = 0. 

Consider an infinite plate ( z  = 0 )  performing rotatory oscillations of the type 
rQcos (nt) and of small amplitude E about an axis (r = 0 )  perpendicular to its 
plane in an incompressible second-order fluid. When the fluid fills all the space 
z > 0 the boundary conditions can be written as 

I (7) 

1 

u =  0, v=rQcos(nt), w = 0 at z =  0, 

u - to ,  v - t o  as s-tco. 

In  presence of another stationary parallel plate at z = d the boundary conditions 

(8) 

become 
u = 0,  v = rQcos(nt), w = 0 at z = 0,  

u = o ,  v = o ,  w = O  at z = d .  

In  both the cases we assume the velocity components and the pressure to be of 
the following form: 

u = rQF’(7, T), v = rQG(y ,  T), w = - 2dQF(7, T), (9) 

(10) 1, = P1 Q[ -PI + (r”d2) P219 

where Z = dy,  t = T/n, ill = ,ul/p, i2 = nc, 

and a prime denotes differentiation with respect to 7. In  the case of a single 
unbounded plate the distance d is defined as (2vl/n)$. Substituting these expres- 
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sions for the velocity components and the pressure in the equations (1)-(5) and 
taking R = nd2/v,, a = ,u,n/,u,, /3 = ,u3n/,u,, we get 

R[aFr/aT + E:(F', - G2 - 2FF")I = F" + a[aF"/aT - 2~:(FFiv - F"')] 

+/3~""2-G'2-2F'F''')-2p2r ( 1 1 )  

R[aG/aT + 2€(F'G - FG')] = G" + a[aG"/?T + %(F"G' - FG")] 

+2/3e(F"G'-P'G"), (12) 

R[ - 2 aFl?T + 4FF'l = p i  - 2F" + 2 ~ [  - aF"/aT + 2€(9FF" + FF")]  

+ 28peF'F''+ (r2/d2) [(4a+ 2p) ( F " P  +G'G'') -p i ] .  (13)  

Equating the terms independent of r and the coefficient of r2 on both sides of ( 1 3 )  
we get two equations. Integrating the equation arising out of the terms inde- 
pendent of r we get p,, while integrating the second one we have 

p ,  = (2a+/3) (F"z+G")+h. (14) 

In the case of a single plate when fluid fills the space x > 0 the constant of inte- 
gration h is zero in view of the condition 

FN+O,  G ' + 0 ,  p 2 i 0  as 7-+00. (15 )  

With this value of p ,  ( 1  1 )  becomes 

R[aF'/aT + s(F', - G2 - 2FF")] = F"' + a[?lF'"/aT - &(P"2 + 2GF2 + PFiv)] 

- /3c(Fn2 + 3Gr2 + 2F'F") - 3h. ( 1 6 )  

The functions H, G and the constant of integration h can be completely deter- 
mined from (12), ( 1 6 )  and the boundary conditions. A solution is sought here by 
expanding them in powers of E:. Substituting the series 

F(r ,  T ,  = F O ( 7 7  +E:F1(7> T ,  +E:2F2(7> T ,  f . . * >  

G(7, T )  = Go(7, T )  + ~:Gc,(q, T )  + ~:'G2(7, T )  + . . - 3  

A(T) = A , ( T ) + E : ~ , ( T ) + E : ~ ~ ~ ( T ) +  ..., 

into (16) and (12) and equating the coefficients of like powers of E: we obtain the 
following system of linear partial differential equations: 

R aFh/aT = F t  +a aF:/aT - 2h0, ( 1 7 )  

R[aF;/aT + (Fh2 - G$ - 2F0 F:)] = FT + C Z [ ~ H T / ~ T  - (2F;' + 4Gh2 + 2F0 F F ) ]  

- /3(FA2 + 3Gh2 + 2Ph F:) - 2hl, (18)  
R aGolaT = Gd + a aG,"jaT, ( 1  9) 

R[aG,/aT + 2(Fh Go - Fo ah)] = Gi + a[aC;/aT + 2(P{Gh - FOG:)] 

+ 2P(Fg Gh - Fh G,"), etc. (20)  

3. Unbounded single plate 
In this case the boundary conditions ( 7 )  are to be used which can be written as 

F,,, = Fin = 0 at 7 = 0; Fin+O as 7+00 (for .m = 0,1 ,2 ,  ...), (21) 

(22) 

Go = COST,  G,,, = 0 at 7 = 0; G,,, -+ 0 as 7 -+ 00 

(form = 0, 1,2, ...); 
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A, = A, = A, = 0, h being zero, we get 

and then the solution of the equations (17)-(20) satisfying the boundary condi- 
tions (21) and (22) is (d being (2v1/n)4, R = 2 )  

- $ ( I  +4a2)a{cos ( ~ T + X - ~ ) - ~ - C ~ C O S ( ~ T - D ~ + X - ~ ) } ] ,  (25) 
Gl(7,T) = 0, (26) 

where A = J2 cos 8/( 1 i- a2)%, B = J2 sin 8/(1+ $)), 
G = 2 cos 4 / ( 1 +  4a2)), D = 2 sin # / ( I  + 4a2)), 

4 = tan-1 [ { ( I  + 4a2)* - za) /{ ( l+  4& + 2a}]+, 

8 = tan-1 [{( 1 + a2)) - a}/{( 1 + a2)* + a}]&, 
x = t a r 1  [( 1 - 9a2 - 9ap)/(6a + 3p)]. 

Having F0(7, T )  = 0, the first-order solution is a transverse velocity 

v = rR exp { - A(n/2v1)* z }  cos [nt - B(n/2vl)+ 21. (27) 

From the expression for v, the boundary-layer thickness is of the order of 
( vl/nA2)*. Since p2 is negative and is small compared with ,ul for the fluids so far 
studied, A decreases as n increases. If we study the flow of different second-order 
fluids for a particular value of n, we find that the boundary-layer thickness 
increases with the increase of I,u2/,u11. If we choose a particular fluid and study the 
flow for different values of n, the boundary-layer thickness decreases as n increases 
provided n < Ipl/3,u21. The condition of slow flow will be violated if n exceeds this 
value, hence for second-order fluids the boundary-layer thickness decreases with 
increase of n. 

The radial and axial components of the velocity can be divided into steady and 
fluctuating parts. Let us, w, denote the steady parts and uf, wf denote the fluctu- 
ating parts of u and w, respectively. We can write 

-exp{ - G ( n / ~ v , ) + z } c o s ( 2 ~ + ~  ( n / 2 v l ) + z + x - 4 ) } - , / 2 ( 1  +a2)t 

x {cos (2T + x- 0) - exp { - A(2n/v1)4- z }  cos (27' - B(2n/vl)* x + x- O)}]. (31) 
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From (30) and (31) we deduce that uf decreases as z increases and vanishes out- 
side the boundary layer, while 

x [ 2 ( 1 + 4 a 2 ) f c o s ( ~ T + X - - ) - 2 / 2 ( 1 + " 2 ) t C O S ( 2 T + X - 8 ) ]  (33) 

which is necessary to maintain the continuity of the flow. The form of us and w, 
suggests the definition of a stream function as 

which at  large distances from the plate behaves as 

This is the stream function of an axially symmetric flow against an imaginary 
wall z = (v1/2A2n)4. The persistence of us outside the boundary-layer region 
indicates an error which is due to approximating the inertia force by its centri- 
fugal part even at large distances from the plate in this type of series expansion. 
A further investigation of the steady part of the flow is required. 

4. Presence of another plate 

written as 
In  this case the boundary conditions (8) are to be satisfied, these can be 

F,=F&=O at y = O ;  Fm=Fin=O at y = 1  ( form=0,1 ,2 ,  ...); (34) 

Gn = COST, Gm+l = 0 at y = 0; (form = 0 , 1 , 2 , . . . ) .  (35) 

The solution of the equations (17) and (19), satisfying the above boundary 

G, = 0 at y = 1 

conditions, is 

[cosh (A(2 - 7)) cos (By)  - cosh (Ay) cos (B(2 - y))] cos (nt) 
+ [sinh (A(2 - y)] sin (By) - sinh (Ay) sin (B(2 - y)}] sin (nt) Go(?, T )  = _ _ _ ~  ~_ ~ ~ - 

[cosh (2A) - cos (2B)] , 

(37) 
where 

For small values of R, the transverse component of the velocity behaves as 

A = [R((l +a2)* +a:)/2(1+~2)]k, B = [R((1 +a2): -a)/2(1 +a2)]*. 

Ra 

For large values of R it behaves as 

v/rQ = ecA71 cos (nt - BT), (39) 

which is similar to the expression for v/rQ in the case of the unbounded plate. 
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The function G, is zero throughout and the function F, and the constant A, are 
of the following form, 

This form is suggested by Gt which is composed of a steady term and a term of 
frequency 2n. Complex notation has been adopted here with the convention that 
only the real parts of the complex quantities have physical meaning. Sub- 
stituting the expressions for Po, PI, Go, A, into (18) and equating the coefficients 
of e2iT and terms independent of it, we get two equations giving f (7) and h(q) .  The 
function f (7) and the constant K ,  are given by 

RA-~B-~(  1 + $)-: 
f ( q )  = - -- - [{4 a+ 3p- (1 +a2)g){(l - 3r2+ 2y3)sinh 2A 16( C O S ~  2A - cos 2B) 

[{4a + 3p- (1 + a2)t)  { A  cosh (2A) - sinh (2A) +A} B3 
3RA-3B-3( 1 + a2)-* K -  -_____ 

- - 8jcosh 2A - cos 2B) 

- (4a + 3/3+ (1 + a2)*} (B cos 2B - sin 2 B  + B)  As]. (41) 

For small values of R, the steady parts of u and w to the second order of approxi- 
mation in e are given by 

4a + 3p ((20 - 7011 + 7072 
eR2ay( 1 - 7) 
2520( 1 +as)  

- ~~ [ 2 + 357 - 8572 + 3573 - 774 + 
(1 + “2)+ 

and 

sR2av2( 1 - 7)’ 
1260( 1 + a2) 

.ia + 3p 
(1 + a2)* 

- ___ [ 1 + 131- 5y2+y3+ 

(10- 10q+5q2-73) (--) 2A4 + 2B4 -(3-y) (7A2-7Bz))] +O(R3), (43) 
A4 - B4 A2 + B2 

respectively. The asymtotic behaviour of us, w, for large values of R is given by 

__ N ~- 
rQ 4A } [( 1 - y) (1 - 39) A + 3 y ( l - y )  -A e-2Aq], 

(44) 

[( 1 - y)2 (1 + 27) - M y (  1 - y)2- e-2av]. 

(45) 

dR 4A 

12 Fluid Mech. 17 
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The expression for h(7) is complicated and it is cumbersome to separate its real 
and imaginary parts. However, the asymtotic behaviour of h(7) and h'(7) for 
large values of R can be written as 

4[2a  - i( 1 + 3a2)]  Z ( A + i B ) - ( C + i D )  
i - - 3 a ( a + p ) - i ( 4 a + 3 @ )  h(7) = 2(C + iD - 2 )  ( A  + iB) 

1 + e-(C+iD)q - e-(C+iD) (1-7) e-(C+iD)v e-2(A+iB)~ 

x y-l+---- ] + c m  - 2(A + iB) (46 )  [ C+iD 

2(A + iB) - (C + iD) 4[2a  - i (  1 -t 3a2)] 
h'(r) = 2(C+iD-Z) (A+iB) and ~ 

1 - 3a(a  + p, - i ( 4 a  + 3p)  
x [ 1 - e-(c+iD) 11-11) - e-(c+iD)?~] + e - W + W  11 - e-(C+W 7. (47 )  

where 

C = [R{( 1 + 4a2)4 + k}/( 1 + 4a2)]4, D = [R{( 1 + 4a2)4 - 2 ~ } / (  1 + 4a2)]4. 

The asymtotic behaviour of the constants is given by 

.Kl N 3A-1(A - 1) [( 1 + a2) - ( 4 a  + 3p) (1 + a2)*]/[4(  1 + a2)' +a], 

HI N [2(A + iB)  - (C + iD)] [l - 3a2 - 3 a p -  i ( 4 a  + 3/3)]/[2a - i (  1 + 3a2)]  

x [8R(A + iB) (C + iD - Z ) ] .  

The expressions for h(7) and h'(y) contain the terms of the type e-'V as well as 
e-k(l-7) where 1 and k are constants. This fact shows that the boundary layer 
starts developing at both the plates as R increases. 

5. Discussion 

transverse shearing stress a t  the plate is given by 
In the case of oscillation of an unbounded plate (fluid from z = 0 to z = 00) the 

[73s]z=0 = - rpQ(vl n)& ( 1  + a2)$ cos [T + $77 - 61. 

Gl(r, T) being zero, it  is correct up to second order in E and the correction of the 
third order in e can be shown to be negligibly small (Rosenblat 1959). It has a 
phase lead of [&r - 81 over the oscillation of the plate and this lead decreases as 
n increases. For a 6.8% solution of poly-iso-butylene in cetane at 30 "C the phase 
leads are 44-23", 43.85", 43.47' for n = 1.0, 1.5, 2.0 respectively. For Newtonian 
viscous fluid, i.e. when ,u2 and p3 are taken to be zero, this phase lead is inde- 
pendent of n and is of 45-00'. The radial shearing stress is given by 

This shearing stress is composed of a steady and a fluctuating part and is of 
second order in e. 
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In the case when a stationary plate is present at x = d the transverse shearing 
stresses on the plates for small values of R are given by 

[~,e],=d = - 7 1 - 7R2 --__ ] cos (nt) - ( a - - + ~ 7R2Cr. ]sin(nt)] 
r*’L1 [ [ 360( 1 + a2) 6 360(1+a2) 

It is obvious from the above expressions that the shearing stress on the stationary 
plate tends to that on the oscillating one when R tends to zero. For large values of 
R the shearing stresses on the plates behave as 

r Qp1 
[T~,.]~=~ = - [ ( A  - aB) cos (nt) - ( B  + aA) sin (n t ) ] ,  

When R tends to infinity the shearing stress on the stationary plate tends to zero 
and the shearing stress on the oscillating plate behaves as if the stationary plate 
were absent. 

At  this stage a further investigation of the steady part of the flow in the case 
when the fluid is infinite in extent (single plate) is considered by another approxi- 
inate Pohlhausen-type method in which all the inertia terms are retained. 
Replacing F by Fs and G, Gf by their root-mean squares 

respectively in equation (16) we get 

Taking 6 to be the dimensionless boundary-layer thickness and integratiilg (48) 
from 0 to S we have 

with boundary conditions 

&(O) = 0, a;(O) = 0, P ~ ( 0 ) + ( 1 - ( 4 a + 3 P ) ( 1 + ~ z ) - ~ )  = ~~(2a+p)P:(O) ,  

Pi(&) = F;(s)  = F f ( 6 )  = ... = 0. 
A solution of (49) may be taken of the form 

If we neglect and terms of similar order the boundary conditions are satisfied 
and when 7 < 1, e-718 + 1; hence near the plate FL in (51) behaves as uS/rQe in 
(28). Substituting (51) into (49), we get 

{ 1 - (4a + 38) ( 1 + a2)-*} ( 2AS - 1 )2 (3A6 + 4 ~ r . A ~  - PA2) = ( 8A3/e2) (2A6 + 1), (52) 
12-2 
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which gives 6. Integrating (51) and applying the boundary conditions (50) we have 

pA6(  1 - e-@) - (1 - e-2dv)]7 (53) 

(54) 

0 

FIGURE 1. Steady part of radial velocity, plotted as u,/r as a function of distance from 
the plate plotted as z/(2v1)*, with B = $. - , Second-order fluid; - - -, corresponding 
case in Newtonian fluid. 

For a 6.8% solution of poly-iso-butylene in cetane at 30"C7 ,ul = 60.0, p2 = - 1.6, 
p3 = 7.4 (all expressed in CGS units) and taking E = t we obtain the results shown 
in table 1. The non-dimensional boundary-layer thickness 6 decreases as n in- 

n a P 
1-0 - 0.0267 0.1233 
1.5 - 0.0400 0.1850 
2.0 - 0.0533 0.2467 

Newtonian zero zero 
fluids 

TABLE I 

s P,(m) 
6.037 1 1.0468 
6.6194 0.9637 
7.3307 0.9190 
5.3306 1.2077 

creases while in the case of Newtonian fluids it is independent of n. Consequently 
the rate of decrease of boundary-layer thickness (3v, S2/n)4 is much less than that 
in Newtonian fluids. The axial component of the velocity at infinity W,(CO) 

increases with n but the rate of increase is much less than that in Newtonian 
fluids; again this fact is due to decrease of F,(co) as n increases. The graphs for 
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u,/r and - u ~ J v ~  have been plotted against z / (  2v,)* for n = 1.0,1.5,2.0 in figures 1 
and 2 respectively. The lines representing the corresponding flow in Newtonian 
fluids, i.e. taking p2 = p3 = 0 are shown in the graph by the dotted lines. 

4.0 8.0 12.0 
z/(2vl)t (seek) 

FIQURE 2. Steady part of axial velocity, plotted as w8/vt as a function of distance from the 
plate plotted as z/(2v1)*, with E = 4. - , Second-order fluid; - - -, corresponding case in 
Newtonian fluid. 
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